Разделы сайта

Читаемое

Обновления Mar-2024

Промышленность Ижоры -->  Теоретическая механика 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 [ 78 ] 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

скольжения. Коэффициент трения покоя соответствует такой максимальной силе трения , при которой имеется предельное состояние равновесия. Малейшее увеличение внешних сил может вызвать движение. Коэффициент трения покоя, как правило, немного больше коэффициента трения скольжения. С увеличением скорости скольжения значение коэффициента трения скольжения сначала незначительно уменьшается, а затем остается практически неизменпным. Значения коэффициентов трения для некоторых пар трения следующие: дерево по дереву 0,4-0,7; металл по металлу 0,15-0,25; сталь по льду 0,027.

3. Максимальная сила трения в довольно широких пределах не зависит от площади соприкасающтся поверхностей.

Силу трения скольжения иногда называют сипой сухого щремия,

10.2. Реакция шероховатой поверхности. Угол трения

Реакция идеально гладкой поверхности, как уже говорилось вьппе, направлена по нормали к поверхности. На шероховатой поверхности могут возникать силы трения скольжения. Поэтому реакцию шероховатой поверхности представим в виде двух составляющих: нормальной реакции N (равна по модулю силе нормального давления) и перпендикулярной ей силы трения F (рис. 10.1). Полная реакция R=N + F всегда отклонена от нормали к поверхности на некоторый угол а. На рис. 10.1 видно, что

tga = F/JV.

Если тело лежит на горизонтальной шероховатой поверхности и на него не действуют никакие внешние силы, кроме силы тяжести, то F = 0, а полная реакция R = N и перпендикулярна опорной поверхности. Приложив к телу силу F, мы стремимся вызвать его движение, но оно не ШШШЛШЩ происходит, так как возникает F

сила трения F = , причем г. Рис. 10.1

F Fax С увеличением силы



Fj будет возрастать и сила F . Наконец, при = наступит предельное состояние равновесия, при котором полная реакция R отклонится от вертикали на угол , называемый углом трения. Обозначив его через ф, получим

tg9 = = /.

(10.2)

Тангенс угла трения равняется коэффициенту трения. Полная реакция неидеальной связи при равновесии имеет направление в пределах угла трения.

10.3. Реакция связи при качении

Абсолютно твердых тел, как и абсолютно гладких поверхностей, в природе не существует. Поэтому круглое тело (цилиндр, колесо), деформируясь, вдавливается в опорную поверхность. При качении цилиндр вдавливается в опорную плоскость и контактирует с ней по некоторой поверхности, которая в плоскости рисунка образует дугу CD, сдвинутую относительно вертикального диаметра цилиндра в направлении качения (рис. 10.2, а). Полная реакция R опорной поверхности на цилиндр как сумма системы распределенных сил, вызванных деформацией поверхности, препятствует качению последнего. Это сопротивление, возникающее при качении одного тела по поверхности другого, условно называют трением качения.






Определение значений и направлений распределенных сил представляет сложную задачу механики деформируемого твердого тела. В инженерных расчетах нас интересует момент сопротивления качению (рис. 10.2, б). Схематизируя явление, будем рассматривать качение по недеформируемой поверхности, а полную реакцию R (см. рис. 10.2, а) представлять в виде двух составляющих, приложенных в точке 5, смещенной от точки А в сторону возможного качения на некоторую величину 6 (рис. 10.2, в). Сила F - сила трения скольжения, а сила N - нормальная реакция, равная по модулю силе нормального давления.

Из условия равновесия цилиндра (см. рис. 10.2, в) будем иметь

N = P, F = Q, Qr = bN. (10.3)

Произведение dNiM) называется моментом сопротивления качению, или моментом трения качения. Если сила Q мала, то смещение силы N от вертикального диаметра цилиндра также незначительно; с увеличением Q это смещение возрастает. Наконец, при Q цилиндр достигнет предельного состояния

равновесия и нормальная реакция N будет Ьтстоять от вертикального диаметра на предельном расстоянии 5, которое называется коэффициентом трения качения. Выражают 5 обычно в сантиметрах. Коэффициент 5 зависит от свойств материалов и состояния поверхностей соприкасающихся тел, определяют его опытным путем. Например, при качении колеса по рельсу 5 = 0,005см, закаленного шарика по закаленной канавке (шариковый подшипник) 5 = 0,001 см.

10.4. Равновесие тела при наличии трения. Конус трения

Равновесие тел с учетом сил трения скольжения рассматривают обычно для предельного состояния, когда сила трения достигает максимального значения. Реакция неидеальной связи представляется двумя составляющими: нормальной реакцией N и максимальной силой трения F. В зависимости от поставленной задачи результат решения может быть выражен в виде равенства или в виде неравенства.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 [ 78 ] 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка