Разделы сайта

Читаемое

Обновления Apr-2024

Промышленность Ижоры -->  Сварка металлов и сплавов плавлением 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 [ 35 ] 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

эффективность газовой защиты влияют тип сварного сбединения и скорость сварки. С увеличением скорости сварки стабильность защиты снижается.

Для обеспечения надежной защиты зоны сварки и сварочной ванны от окружающего воздуха важное значение имеют расстояние сопла от изделия, размер сопла и расход защитного газа. Чрезмерное приближение к изделию увеличивает забрызгивание сопла, а удаление приводит к нарушению защиты зоны сварки. При существующем оборудовании расстояние сопла от изделия обычно выдерживают в пределах 7-25 мм.

Находит применение ручная и полуавтоматическая сварка неплавящимся (вольфрамовым или угольным) электродом и ручная, полуавтоматическая и автоматическая сварка плавящимся электродом.

Сварку неплавящимся электродом тонкого металла без зазора между кромками ведут без присадочного металла, сварку более толстого металла выполняют с присадкой. Возможна сварка во всех пространственных положениях.

Сварку в защитных газах, как правило, выполняют при напряжении 22-34 В. При этом обеспечивается надежная защита плавильного пространства от окружающего воздуха и снижается угар элементов, входящих в состав электродной проволоки. При сварке неплавящимся электродом применяют стержни диаметром 0,8-25 мм и силу тока 400-300 А, при сварке плавящимся электродом - электродную проволоку сплошного сечения диаметром 0,5-4 мм (сила тока 50-700 А) и порошковую проволоку.

Газы, применяемые для защиты дугового промежутка, можно отнести к таким основным группам: а) инертные газы; б) активные газы; в) смеси газов.

Сварка с защитой инертными газами находит достаточно широкое применение. Инертные газы не растворяются в металле сварочной ванны и не образуют химических соединений с элементами, входящими в его состав. Серьезным недостатком этого способа является высокая стоимость и дефицитность инертных газов. Из инертных газов наиболее широко распространены в промышленности аргон и гелий, обеспечивающие высокую устойчивость дугового разряда. Для сварки меди используют азот, являющийся по отношению к ней инертным газом. В отечественной практике наиболее широко применяется сварка в аргоне.

Сварку в аргоне (аргоно-дуговую сварку) ведут дугой прямого действия неплавящимся, в основном вольфрамовым электродом или плавящимся электродом, по составу близким к составу свариваемого металла на переменном или постоянном токе прямой полярности. Этот способ сварки применяют преимущественно при изготовлении конструкций и аппаратуры из тонколистовых высоколегированных сталей, титановых и алюминиевых сплавов. Для обеспечения направленного переноса металла во всех пространственных положениях используют сварку с наложением

8 Заказ Ns 782 1 13



дополнительных импульсов. При сварке с защитой активнУми газами наиболее широко используют углекислый газ. Некоторое применение находит также водород.

Активные газы или продукты их диссоциации в процессе сварки взаимодействуют с металлом сварочной ванны, растворяются в нем или образуют с элементами, входящими в его состав, химические соединения.

Сварка в углекислом газе осуществляется главным образом плавящимся электродом, а иногда угольным электродом. В качестве плавящегося электрода служат низколегированные сварочные проволоки сплошного сечения и порошковые проволоки. Сварку низколегированными проволоками сплошного сечения ведут постоянным током обратной полярности.

При сварке постоянным током прямой полярности вследствие более высокого содержания в металле шва водорода наблюдается интенсивное образование пор. Сварка активированной проволокой сплошного сечения возможна и на прямой полярности. Питание дуги переменным током возможно при сварке порошковой проволокой, в состав которой введены стабилизирующие дугу вещества. Использование вольфрамового электрода нецелесообразно, так как углекислый газ при высоких температурах является энергичным окислителем, приводящим к сгоранию электрода. Защита углекислым газом применима в основном при полуавтоматической сварке низкоуглеродистых и низколегированных сталей и в некоторых специальных случаях, о чем будет сказано в главах, посвященных технологии сварки различных сталей.

Полуавтоматическую сварку в углекислом газе можно выполнять во всех пространственных положениях. Расширение области ее применения идет за счет замены ручной сварки и полуавтоматической сварки под флюсом. Широкое использование полуавтоматической сварки в углекислом газе взамен ручной сварки покрытыми электродами обусловлено большей производительностью, лучшими условиями труда и меньшими требованиями к квалификации рабочих. Перед полуавтоматической сваркой под флюсом ее преимущества заключаются в возможности визуального наблюдения за расположением электрода, отсутствии операций по удержанию и удалению флюса и возможности выполнения швов во всех пространственных положениях.

Объем автоматической сварки в углекислом газе пока ограничен, и в большинстве случаев она не может конкурировать со сваркой под флюсом. Серьезным еще не устраненным недостатком сварки проволокой сплошного сечения в углекислом газе является интенсивное разбрызгивание металла, вызывающее засорение аппаратуры и свариваемых деталей. Распространенные на практике методы снижения прилипания брызг пока нельзя считать достаточно рациональными. Некоторые положительные результаты в этом отношении достигаются при применении порошковой проволоки.




Рис. 3-6. Двойное сопло для сварки в смеси газов:

/ н 2 - каналы для подачн первого и второго компонентов смеси

В настоящее время еще нет достаточных данных для определения рациональности применения того или иного типа электродной проволоки. Выбирать проволоку следует в зависимости от условий сварки. Повысить производительность полуавтоматической сварки в углекислом газе можно путем применения форсированных режимов сварки при увеличенном вылете электродной проволоки и использования сварочной проволоки большего диаметра.

Сварка в водороде (атомноводородная сварка). Обычно сварку ведут независимой дугой, возникающей между двумя вольфрамовыми электродами, подсоединенными к источнику питания переменного тока с напряжением холостого хода примерно 300 В. Струя водорода подается в зону дуги вдоль электродов. Сварку ведут на длинной (звенящей) дуге при напряжении 70-150 В. Расход водорода 1-3 м*/ч. Свариваемый металл нагревается за счет теплоты, выделяемой в столбе дуги, и некоторого количества теплоты, выделяемой при диссоциации и последующей рекомбинации атомов водорода на поверхности свариваемого металла.

Сварка в водороде, сперва получившая достаточно широкое применение для соединения металла толщиной до 3 мм, в настоящее время вытеснена другими способами и в первую очередь аргоно-дуговой сваркой. Малое развитие этого метода определяется взрывоопасностью водорода, необходимостью в источниках питания с высоким напряжением холостого хода и значительным короблением свариваемых деталей.

Сварка в газовых смесях. В практике применяют смеси инертных газов, смеси инертных и активных газов и смеси активных газов. Для получения смесей используют баллоны с заранее приготовленной смесью, специальные смесители, а в некоторых случаях двойное сопло (рис. 3-6). Преимущества защиты смесью газов сводятся к улучшению технологических и металлургических свойств защитной атмосферы и к экономии дорогих газов. Защита смесью газов применяется главным образом при полуавтоматической сварке. Сварку можно вести во всех пространственных положениях. Для сварки цветных и активных металлов и специальных сплавов наиболее эффективна аргоно-гелиевая смесь. Соотношение этих инертных газов в смеси может быть различным. Сварка углеродистых и низколегированных сталей этим методом экономически нецелесообразна.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 [ 35 ] 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка