Разделы сайта

Читаемое

Обновления Apr-2024

Промышленность Ижоры -->  Сварка металлов и сплавов плавлением 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 [ 246 ] 247 248 249 250 251 252 253

0,03 I 0.OS

t 002

поры

W/A Нет

YAAAA пр

Рис. 13-29. Влияние напряжения дуги на содержание азота и образование пор в металле, наплавленном порошковой проволокой ПП АН130- U. с и Л/7,р - рабочий и критический диапазоны напряжений, сила тока 300 А

20 22 й 26Upl8 SO Uj ,

вполне определенный диапазон напряжений, при котором поры не образуются (At/кр). Имеется также диапазон напряжений, при котором реализуются высокие наплавочно-технологические свойства проволоки (АС/ с)- хорошее формирование, минимальное разбрызгивание и т. п. Обычно проволоку разрабатывают так, чтобы диапазоны Af/p и Af/ с примерно совпадали (рис. 13-29). Применяют постоянный ток обратной полярности (250-350 А); источник питания должен иметь жесткую внешнюю характеристику.

Кобальтовые сплавы с хромом и вольфрамом типа N, так называемые стеллиты, отличаются замечательными эксплуатационными свойствами: они способны сохранять твердость при высоких температурах (см. рис. 13-6), стойки против коррозии и эрозии, а также имеют отличную износостойкость при сухом трении металла по металлу. Сам по себе кобальт не обладает высокой жаропрочностью, это свойство придают сплавам присадки хрома (25- 35%) и вольфрама (3-30%). Важным компонентом является и углерод, который образует с вольфрамом и хромом специальные твердые карбиды, улучшающие сопротивление абразивному износу.

Кобальтовыми сплавами наплавляют клапаны двигателей внутреннего сгорания, уплотнительные поверхности паровой арматуры сверхвысоких параметров, матрицы для прессования цветных металлов и сплавов и др. При наплавке необходимо стремиться к минимальному переходу железа из основного металла в наплавленный, иначе свойства последнего резко ухудшаются. Наплавленный металл склонен к образованию холодных и кристаллизационных трещин, поэтому наплавку ведут с предварительным и иногда с сопутствующим подогревом деталей.

Обеспечение минимальной доли основного металла и соблюдение необходимых термических условий являются наиболее важными особенностями технологического процесса наплавки кобальтовых сплавов. Наплавку осуществляют газовым пламенем прутками из сплавов В2К и ВЗК, а также покрытыми электродами ЦН-2 (тип ЭН-У18К62Х30В5С2-40) со стержнем из прутка ВЗК. Так как применяется подогрев деталей до температуры 600-700° С, то доля основного металла велика (до 30%), и для получения минимального содержания железа наплавку приходится выполнять в три слоя. Это увеличивает расход весьма



дорогого наплавочного материала и повышает трудоемкость работ.

Многие трудности устраняются при плазменно-порошковой наплавке (см. рис. 13-13) с использованием гранулированных порошков. Благодаря особенностям этого способа наплавки доля основного металла не превышает 10% и заданный химический состав наплавленного металла достигается уже в первом слое (рис. 13-30).

Плазменно-порошковую наплавку выполняют на следующем режиме: сила тока дуги прямого действия 180-220 А, сила тока косвенной дуги 70-90 А, скорость наплавки 2-4 м/ч, подачи порошка 2-3,5 кг/ч, расход плазмообразующего, транспортирующего и защитного газа (аргона) соответственно 1,5-2, 7-9 и 15 л/мин. Размах и число колебаний горелки соответственно 20-40 мм и 45-60 кол/мин. При существующих конструкциях горелок производительность наплавки может быть повышена до 6-8 кг/ч, тогда как при ручной наплавке штучными электродами она составляет 1,5-2 кг/ч. Дополнительный выигрыш получается и в экономии наплавочного материала, так как нет необходимости производить многослойную наплавку.

Гранулированные порошки во избежание образования пор и шлаковых включений должны содержать не более 0,08% кислорода. В качестве основного металла при наплавке кобальтовых сплавов служат хромоникелевые коррозионностойкие стали, жаропрочные сплавы на никелевой основе, а также низколегированные стали.

Никелевые сплавы с хромом и бором типа Qa сохраняют высокую твердость при нагреве до температуры 600-700° С, обладают жаростойкостью до температуры 950° С и хорошей коррозионной стойкостью в борной, хромовой, муравьиной, лимонной, уксусной и других кислотах, в растворах хлоридов, каустической соде.


Рис. 13-30. Макрошлиф однослойной наплавки Плазменно-порошковая наплавка гранулированным порошком ПН-АН132



ртути, жидком свинце, расплавленном стекле и прочих агрессивных средах. Эти сплавы применяют для наплавки и металлизации плунжеров водяных и кислотных насосов, уплотнительных поверхностей трубопроводной арматуры для паропроводов, выпускных клапанов дизельных двигателей, пресс-форм для стекла и т. п.

Используют преимущественно плазменно-порошковую наплавку (табл. 13-12). Плазменную наплавку с присадкой порошка ПГ-ХН80СР2 выполняют без подогрева. При наплавке с присадкой порошков ПГ-ХН80СРЗ и ПГ-Н80СР4 для предупреждения трещин необходим предварительный подогрев соответственно до температур 320-380 и 380-450° С. Крупные заготовки арматуры из стали 12Х1МФ с этой целью подогревают и до более высокой температуры. Режимы плазменно-порошковой наплавки примерно те же, что и для кобальтовых сплавов (см. выше), но в связи с более низкой температурой плавления присадочных порошков силу тока дуги прямого действия устанавливают на 20-25% меньше.

При наплавке возможны дефекты в виде пор и шлаковых включений. Это в больщинстве случаев вызвано повышенным содержанием в присадочных порошках кислорода. Этих дефектов нет, если порошок содержит менее 0,12% кислорода.

Никелевые сплавы с молибденом типов Qg и Qg обладают высокой жаропрочностью, хорошей стойкостью против термической усталости в условиях большого числа теплосмен, мало склонны к образованию трещин. В зарубежной практике их используют для наплавки контактных поверхностей конусов и чаш доменных печей (сплав хастелой С). Подобные свойства наплавленного металла обеспечивает сплав инконель, наплавляемый металлокерамической лентой ЛМ-ХН70ГБМТ (табл. 13-11) под флюсом АН-28.

Карбидные сплавы типа Р благодаря высокому содержанию твердых карбидов вольфрама отличаются особо высокой стойкостью против абразивного изнашивания. Этими сплавами наплавляют буровой инструмент, детали режущих органов землеройных машин, детали загрузочных устройств доменных печей.

Карбидные сплавы, вернее карбидные композиции, характерны тем что они не имеют строго определенного химического состава и при их формировании карбид вольфрама не кристаллизуется из расплава (подобно, например, карбидной фазе в сплавах типа G), а вводится в сплав-связку в виде заранее приготовленных зерен нужного размера и формы. Износ карбидных композиций протекает, как правило, избирательно: матрица сплава изнашивается быстрее и выступающие зерна карбидов воспринимают на себя основную нагрузку.

Технология и техника наплавки карбидных композиций должны обеспечивать введение в сварочную ванну частиц износостойкой фазы определенною размера и формы, причем эти частицы должны в минимальной степени растворяться в сплаве-связке



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 [ 246 ] 247 248 249 250 251 252 253

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка