Разделы сайта

Читаемое

Обновления Mar-2024

Промышленность Ижоры -->  Сварка металлов и сплавов плавлением 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 [ 24 ] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

ночку. Принудительный перенос может происходить при сварке во всех пространственных положениях.

Изменение состава защитного газа может привести к существенному изменению характера переноса. Перенос металла при сварке в углекислом газе совершенно отличен от переноса при сварке в аргоне. Он характерен переходом крупных капель. В зависимости от режимов сварки переход капель осуществляется с короткими замыканиями или без них.

Основной причиной такого переноса является сжатие столба дуги и активных пятен, вызванное диссоциацией углекислого газа. При этом возрастает действие отталкивающих сил реактивного давления паров и осевой составляющей электромагнитной силы, способствующих укрупнению капли и увеличению разбрызгивания металла. Потери металла от разбрызгивания зависят главным образом от режима сварки, диаметра проволоки и характеристик источника питания. С повышением напряжения дуги разбрызгивание повышается.

Большое влияние на величину разбрызгивания металла оказывают сила сварочного тока и диаметр проволоки (рис. 2-32). На малых токах (область А на рис. 2-32) перенос металла осуществляется с короткими замыканиями. При этом потери металла определяются в основном динамическими свойствами источника питания - величиной тока короткого замыкания и темпом его нарастания. В диапазоне средних токов (область Б) часть капель переходит в ванну при коротких замыканиях дуги, а часть - без коротких замыканий. В этом диапазоне наблюдается максимум разбрызгивания за счет выброса крупных капель. В диапазоне больших токов (область В) перенос электродного металла происходит без коротких замыканий. Разбрызгивание металла при сварке на больших токах невелико и происходит в основном за счет выброса мелких брызг, образующихся при перегорании шейки между каплей и электродом и при кипении ванны.

С целью уменьшения разбрызгивания при сварке проволокой малого диаметра процесс сварки осуществляют с короткими замыканиями, используя источники с оптимальными динамическими свойствами. При сварке проволокой большого диаметра мини-


Рис. 2-32. Влияние силы тока и диаметра проволоки на потери металла при сварке в среде COj, полярность обратная (А. Г. Потапьевский, В. Я. Лаврищев)



маЛьноГо разбрызгибания добиваю1ся путем подбора оптимаЛьнь1Х режимов сварки, изменяя величину тока и напряжения.

Сварка порошковой проволокой. Общие закономерности переноса металла, установленные при сварке покрытыми электродами, справедливы и для порошковых проволок с соответствующими типами сердечников. Более высокие плотности тока, конструкции проволок и условия контактирования с атмосферой вносят некоторые количественные коррективы.

Наиболее полно изучен перенос металла при сварке проволоками с сердечником рутилового типа. С увеличением силы тока несколько уменьшается средняя масса переносимых капель Рр, растет число капель N и снижается время их существования тр. Малое влияние тока на массу капель связано, по-видимому, с действием реактивных сил, вызванных сжатием столба дуги и активных пятен вследствие диссоциации водорода и паров воды. Источником этих газов являются составляющие сердечника порошковой проволоки - органические вещества и кристаллизационная влага некоторых минералов.

Увеличение напряжения дуги вследствие ее удлинения приводит к значительному повышению парциального давления кислорода в атмосфере дуги из-за подсоса воздуха. При этом увеличивается окисление капель, снижается поверхностное натяжение металла, а следовательно, уменьшаются масса капель и время их существования. Подобный эффект достигается и при введении в сердечник сильных окислителей. Увеличение вылета проволоки приводит к преждевременному выгоранию органических составляющих сердечников и окислению капель, что также способствует их измельчению.

§ 2-7. Образование сварочной ванны, формирование н кристаллизация металла шва

При сварке плавлением доводятся до жидкого состояния кромки соединяемых элементов и дополнительный металл. При сварке без дополнительного металла расплавляется только основной металл. Плавление происходит в зоне сварки - плавильном пространстве. Расплавленные основной и дополнительный металлы, сливаясь, образуют общую сварочную ванну, находящуюся в состоянии непрерывного движения и перемешивания. Границами ванны служат оплавленные участки основного металла и ранее образовавшегося шва. Механизм переноса электродного металла в сварочную ванну рассмотрен выше.

В процессе сварки источник теплоты перемещается вдоль соединяемых кромок, а вместе с ним движутся плавильное пространство и сварочная ванна. При сварке под флюсом сварочная ванна окружена оболочкой (пузырем) из расплавленного флюса-шлака, который полностью закрывает ореол дуги, делая его не-



видимым для глаз. При сварке с газовой защитой сварочная ванна окружена прозрачной оболочкой из газа, а при применении покрытых электродов сварочная ванна защищена шлаком и газом. В обоих случаях ореол дуги хорошо виден. При электрошлаковой сварке и дуговой сварке под флюсом вертикальных швов сварочная ванна изолирована от окружающего воздуха слоем шлака, расположенным над ее поверхностью.

При дуговой сварке плавильное пространство можно условно разделить на два участка (рис. 2-33): головной, где происходит плавление основного и дополнительного металлов, и хвостовой, где располагается сварочная ванна и начинается ее кристаллизация. Форма сварочной ванны при дуговых процессах в этом случае характеризуется ее длиной, шириной, толщиной и глубиной проплавления основного металла (рис. 2-34). Она ограничивается изотермической поверхностью, имеющей температуру плавления основного металла.

Объем сварочной ванны в зависимости от способа и режима сварки изменяется от 0,1 до 10 см. В плане сварочная ванна имеет эллипсовидное вытянутое вдоль направления сварки очертание (рис. 2-35). В поперечном сечении в зависимости от режима и условий сварки форма сварочной ванны изменяется в широких пределах. Наиболее характерной для дуговой сварки является форма провара, приближающаяся к полуокружности. При лучевых способах сварки форма ванны напоминает острый клин-кинжал.

Время пребывания металла сварочной ванны в жидком состоянии для различных ее участков неодинаково. Приближенно среднюю продолжительность существования сварочной ванны

(с) можно определять из зависимости ЧГЖ - *

св =

где L - длина ванны, мм; V - скорость перемещения источника нагрева, мм/с.


Рис. 2-33. Строение сварочной ванны Рис. 2-34. Форма сварочной ванны.

/ - головной участок, 2 - хвостовой участок

L - длина, Ъ - ширина.

Я - толщина; й - глубина



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 [ 24 ] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка