Разделы сайта

Читаемое

Обновления Apr-2024

Промышленность Ижоры -->  Сварка металлов и сплавов плавлением 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 [ 23 ] 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253


-1

о -г

m 500 600 100 boo leg, a

Рис. 2-28. Влияние силы тока:

а - на массу Р(.р и число N переходящих капель;

/ - прямая полярность;

ш JOD 600 100 т 1сдЛ S)

б - VIS время взаимодействия капель Т

40 В; флюс АН-20;

2 - обратная полярность

средственного контакта со столбом дуги. Капли могут также лететь внутри флюсового пузыря. Существенное влияние на характер переноса оказывают режимы сварки и полярность тока.

При сварке на обратной полярности с увеличением силы тока уменьшается масса переходящей части капли Р и возрастает число переходящих капель Л. Время взаимодействия капель с окружающей средой тр уменьшается. На больших токах дуговой промежуток мал и подвижная сварочная ванна захватывает капли металла на торце электрода, не давая им возможности достигнуть больших размеров. При сварке на прямой полярности масса переходящей части капель и число переходов с ростом силы тока изменяются мало. Объясняется это увеличением плотности тока в активном пятне и возрастанием действия сил реактивного давления паров, которые способствуют удержанию капли на торце электрода (рис. 2-28). Под действием этих сил капли на торце сильно деформируются и вытесняются иногда на его боковую поверхность.

С увеличением напряжения дуги при сварке на прямой и обратной полярности возрастает масса переходящей части капли Рр и снижается число переходящих капель (рис. 2-29, а). Время между переходами т также растет (рис. 2-29, б). При удлинении дуги создаются более благоприятные условия для свободного роста капли; вероятность коротких замыканий и непосредственного перетекания металла в ванну снижается. Установлено, что протекание реакций между металлом и флюсом зависит от времени их взаимодействия на торце электрода.

Сварка в защитных газах. Наиболее полно особенности переноса металла изучены при сварке в аргоне. Для этого способа




Рис. 2-29. Влияние напряжения дуги:

tcp,C 0,П 0,12 0,10 0,06 0,06 0,0k 0,02

36 S)

а - на массу и число JV переходя- / - прямая полярность, / = 470 -щих капель; н- 550 А;

иа время взаимодействия капель т

2 - обратная полярность, / = 610-

сварки наиболее характерным является капельный перенос металла с монотонным снижением размеров капель по мере возрастания силы тока. При достижении определенного значения тока, называемого критическим, размер капель резко уменьшается и перенос становится струйным (рис. 2-30).

Изменение характера переноса связано с изменением соотношения сил, действующих на каплю. Увеличение силы тока приводит к возрастанию температуры жидкого металла на торце электрода. При достижении критического тока капли металла нагреваются до температуры кипения. Возрастание температуры жидкого металла приводит к значительному уменьшению силы поверхностного натяжения и увеличению испарения электродного металла. Повышение парциального давления паров металла в дуге способствует увеличению сечения столба дуги и размеров активных пятен. Благодаря увеличению размеров активного пятна на электроде осевая составляющая электромагнитной силы меняет

направление и способствует отрыву капель. Величина этой силы с ростом тока возрастает. Уменьшение силы поверхностного натяжения и изменения направления и величины осевой составляющей электромагнитной силы являются основ-

Рис. 2-30. Влияние силы тока на диаметр капель электродного металла при сварке в аргоне, алюминиевая проволока диаметром 1,6 мм, полярность обратная (С. J. CooKsey и др.)




ис. 2-31. Изменения тока и напряжения дуги при им- Чц.В пульсно-дуговой сварке

НОЙ причиной изменения ха- д рактера переноса при сварке в аргоне. Большое влияние на перенос оказывают и плазменные потоки, которые возникают в мощных дугах и направлены вдоль оси дуги.


Величина критического тока зависит от вылета и диаметра электрода: чем меньше диаметр электрода и больше вылет, тем меньше критический ток.

Если металл имеет высокую теплопроводность (алюминий, медь), размер капель уменьшается без изменения геометрии переноса. Если теплопроводность металла низкая, конец электрода приобретает коническую форму и металл стекает в виде струи, так как электромагнитные силы вынуждают жидкость течь вниз.

При очень большой величине и плотности тока наблюдается струйно-вращательный перенос металла. Его возникновение связывают с реактивным действием плазменного потока на электрод. В результате перегрева электрод размягчается по длине вылета и сила реакции струи изгибает его. При изгибе электрода изменяется направление струи и действие реактивной силы, что приводит к новому смещению электрода.

При аргоно-дуговой сварке швов в вертикальном, горизонтальном и потолочном положениях практически невозможно добиться направленного переноса металла. Зачастую при сварке в диапазоне докритических токов образовавшаяся на электроде крупная капля (при обрыве дуги либо при коротком замыкании) отделяется и летит вниз, не попадая в ванночку. В последние годы был разработан способ активного воздействия на процессы плавления и переноса электродного металла - так называемый способ импульсно-дуговой сварки.

Сущность его заключается в том, что на дугу постоянного тока накладываются мощные кратковременные импульсы тока, обеспечивающие формирование капли на торце электрода и перенос ее на изделие (рис. 2-31). В промежутках между импульсами электрод плавится при небольшой силе сварочного тока. При наложении импульса тока большой величины резко возрастают электродинамические силы. Скачкообразно возрастающее радиальное усилие способствует почти мгновенному образованию шейки, а быстрое увеличение осевого усилия ведет к интенсивному перемещению капли вдоль оси электрода в направлении ванночки жидкого металла с последующим отрывом ее и переходом в ван-



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 [ 23 ] 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка