Разделы сайта

Читаемое

Обновления Apr-2024

Промышленность Ижоры -->  Сварка металлов и сплавов плавлением 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 [ 130 ] 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

ограничения при выборе режимов сварки. Заштрихованная область (см. рис. 8-18) соответствует тем редко встречающимся в производственных условиях случаям, когда при сварке электродной проволокой диаметром более 3 мм необходимо применять автоматические регуляторы напряжений сварочной дуги.

Аппараты с постоянной скоростью подачи проволоки отличаются простотой и надежностью. Настройка скорости подачи производится или ступенчато (сменные шестерни или ролики, коробка скоростей), или плавно (механические вариаторы, двигатели постоянного тока).

На рис. 8-19 показана электрокинематическая схема простейшей головки со сменными шестернями. Изменяя соотношение числа зубьев сменных шестерен 5, можно получить требуемую скорость подачи проволоки. Электрическая схема содержит понижающий трансформатор ТП, переключатель ПП и кнопочный блок К с промежуточными реле Р. Кнопками осуществляют настроечное перемещение проволоки, пуск и остановку процесса. Более совершенные головки имеют контактор, отключающий источник питания во время пауз, устройства для возбуждения дуги и для заварки кратера.

Головки со сменными шестернями применяют в серийном и массовом производстве, где режим перестраивается относительно редко и где решающее значение имеют стабильность режима, простота и надежность оборудования. В единичном производстве, где часто необходимо изменять режим, применяют коробки скоростей или вариаторы (механические или электрические). В схеме механизма с коробкой скоростей (рис. 8-20, а) переключение скоростей достигается при помощи двух выдвижных (скользящих) шпонок /, включающих под действием пружины 2 различные


Слепа расптожения фрикционных Игталеи Seccmi/пенчатои перекчи

Зпекгпродиач провотка

пкп, пп, п>п,

Рис. 8-20. Механические системы настройки скорости подачи электродной проволоки

/ - шпонки выдвижные,

2 - пружина

3 - штанга,

4 - шестерня с фиксатором,

5 - асинхронные двигатели,

6 - ведущее звено.

7 - ведомое звено

8 - поворотный ролик

10 - звенья понижаюгцего редуктора: и - ротик подающий 12 - ролик прижимной




Рис. 8-21. Электрические системы настройки скорости подачи электродной проволоки

шестерни в кинематической цепи. Шпонки совместно со штангами 3 с кольцевыми рейками перемещаются при помощи ведущих шестерен 4 Такие механизмы нашли ограниченное применение вследствие сравт1ительно большой массы и размеров. Вариаторы (рис. 8-20, б) сложны в эксплуатации, так как фрикционные элементы быстро изнашиваются, нестабилен их коэффициент трения, они чувствительны к загрязнениям.

Наиболее удобны головки с электродвигателями переменного тока. Однако привод головок, основанных на явлении саморегулирования, должен иметь достаточно жесткие механические характеристики Поэтому малопригодны системы, где частота вращения электродвигателя регулируется за счет изменения силы тока в обмотке якоря или в обмотке возбуждения. Кроме того, последняя схема имеет малый диапазон регулирования. Широкое распространение получила схема (рис. 8-21, а) питания электродвигателя Я от регулируемого источника переменного тока (автотрансформатора АТ или секционированного трансформатора) через выпрямительные блоки ВЯ и ВВ.

Достаточно большой диапазон регулирования дает привод (рис. 8-21,6), работающий по схеме генератор - электродвигатель Я, отличающийся, однако, громоздкостью и высокой стоимостью. На рис 8-21, в показан привод с магнитным усилителем Такой привод имеет диапазон регулирования 1 : 10 и жесткость механических характеристик в среднем до 20% при изменении нагрузки на валу электродвигателя от О до 100% от номинальной.

Блок-схема регулятора напряжения дуги (рис. 8-22) состоит

Рис. 8-22. Бпоксхема регулятора напряжения дуги





Рис. 8-23. Схема регулятора напряжения дуги в сварочной головке АДС-1000-2:

/ - прижимной ролик; 2 - подающий ролик

из устройства СУ, сравнивающего напряжение дуги [/д с эталонным напряжением [/о и усилителя У, передающего разность напряжений [/q- U на привод Д механизма подачи. Таким образом, скорость подачи является функцией напряжения дуги. Если на рабочем участке характеристики значение

то регулятор поддержи-

велико.

вает заданное напряжение с высокой точностью.

Известно большое количество различных конструкций регуляторов напряжения дуги, поддерживающих заданное напряжение соответствующим воздействием на скорость подачи электродной проволоки. Наибольшее распространение получили регуляторы непрерывного действия. В качестве примера на рис. 8-23 приведена схема регулятора сварочной головки аппарата АДС-1000-2. Якорь ДГ электродвигателя подачи проволоки питается от генератора ГГ, в котором имеются три обмотки возбуждения ГГ/, ГГ2 и ГГЗ. Первая обмотка питается от независимого источника через потенциометр. Обмотка ГГ2 включена параллельно сварочной дуге. Магнитные потоки обмотки ГГ/ и ГГ2 направлены встречно. При нормальном напряжении дуги поток обмотки ГГ2 преобладает над потоком обмотки ГГ/ и электродвигатель вращается в направлении подачи проволоки к изделию. Понижение напряжения дуги вызывает уменьшение скорости подачи вплоть до остановки электродвигателя. Дальнейшее понижение напряжения дуги приводит к реверсированию электродвигателя ДГ. Последовательная обмотка ГГЗ служит для повышения вращающего момента электродвигателя при увеличении нагрузки на его валу.

Токоподводящие мундштуки предназначены для направления электрода в сварочную ванну и для подвода к нему тока. Мундштуки бывают роликовыми, колодочными, втульчатыми и сапож-ковыми. Роликовый мундштук (рис. 8-24, а) имеет два или три контакта /, укрепленных на токоведущем корпусе 2. Для надежного токоподвода один из контактов прижат пружиной 3. Колодочный мундштук (рис. 8-24, б) состоит из двух контактных колодок 4 к 5 со вставками 6. Колодка 5 может перемещаться на штыре 7 под действием пружины 8. Ток подводится к неподвижной колодке 4. Принцип действия сапожкового мундштука ясен из рис. 8-24, в.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 [ 130 ] 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка