Разделы сайта

Читаемое

Обновления Apr-2024

Промышленность Ижоры -->  Динамика жидкости: уравнения 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 [ 128 ] 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

Глава 17 Несжимаемые вязкие течения

в этой главе не будет делаться никаких предположений об относительной величине компонент скорости. Следовательно, укороченные уравнения Навье - Стокса (гл. 16) становятся неприменимы и необходимо рассматривать полные уравнения Навье - Стокса; при этом предполагается, что течение несжимаемое.

Численные методы, рассматриваемые в настоящей главе, будут применяться к задачам, в которых нет выделенного направления течения, например задача о вентиляции помещений. Кроме того, во многих случаях будут возникать области возвратного течения. Если эти области велики или их появление связано с нестационарностью течения (например, течение за уступом), маршевые методы (итерационные), рассмотренные в гл. 16, неприменимы для решения подобных задач.

Предположение о несжимаемости течения приводит к дополнительным вычислительным трудностям. В уравнение неразрывности (11.13) входят лишь компоненты скорости. Поэтому в данном случае нет прямой связи с давлением, которая в случае сжимаемых течений осуществляется через плотность. Для расчета несжимаемых течений возможны два общих подхода.

В первом из них используются исходные переменные и, у, р в двумерном случае, а для решения уравнения неразрывности вводятся специальные процедуры. При обобщении этого подхода на случай трехмерных течений не возникает дополнительных трудностей. Соответствующие методы расчета нестационарных течений, основанные на исходных переменных, описаны в § 17.1. Методы в исходных переменных, предназначенные для расчета стационарных течений, описаны в § 17.2.

В двумерном случае явного использования уравнения неразрывности можно избежать, если ввести в рассмотрение функцию тока. Кроме того, введение уравнения переноса для завихренности позволяет получить описание течения в переменных завихренность - функция тока. Такой подход описан в § 17.3. Обобщение этого подхода на трехмерный случай не столь очевидно, поскольку в случае трех пространственных переменных функция тока не существует. Для описания течения



дх ду

= 0,

1 дЧ

~ Re 1

{ дх

f dv

~ Re 1

{ дх

ду

(17.1)

ж + + :( -) + 1Г={ + Г (17.2)

Уравнения (17.1) -(17.3) записаны в безразмерном виде; плотность включена в число Рейнольдса Re. При помощи уравнения (17.1) левые части (17.2) и (17.3), как в уравнении (11.116), записаны в консервативном виде.

Для нестационарных течений требуется определить начальные условия и = uo{x, у) и V = Vo{x, у), удовлетворяющие уравнению (17.1). Граничные условия на твердой поверхности заключаются в отсутствии относительного движения жидкости и твердого тела, что определяет компоненты скорости. Граничных условий для давления на твердой поверхности задавать не надо. Если компоненты скорости определены на всей границе области расчета, как, например, в задаче о движущейся полости, необходимо обеспечить выполнение глобального условия

U-05 = 0, (17.4)

В ЭТОМ случае используются завихренность и векторный потенциал (п. 17.4.1).

Большинство практически интересных течений являются турбулентными, если только число Рейнольдса не слишком мало. Для учета турбулентных эффектов при расчете несжимаемых течений обычно используется либо алгебраическая модель турбулентной вязкости (п. 11.4.2), либо (й - е)-модель (п. 11.5.2). С вычислительной точки зрения использование алгебраической модели требует лишь незначительного изменения алгоритмов, предназначенных для расчета ламинарных течений. Структура дифференциальных уравнений для k и г (11.95) и (11.96) аналогична структуре уравнений импульса, и дискретизация этих уравнений обычно проводится одинаково. Таким образом, алгоритмы расчета ламинарных вязких течений столь же эффективны (с небольшими изменениями) и для расчета турбулентных течений. Поэтому в настоящей главе явное внимание расчетам турбулентных течений уделяться не будет.

§ 17.1. Исходные переменные: нестационарные течения

Уравнения, описывающие двумерные нестационарные несжимаемые ламинарные течения, имеют вид

ди , dv



где с -граница области расчета. Уравнение (17.4) является глобальным выражением (17.1), что может быть получено из сравнения уравнений (11.7) и (11.10) при постоянном значении плотности р.

Если область расчета содержит открытые границы, как в задаче о течении вблизи уступа (п. 17.3.3), число граничных условий на открытых границах может быть получено из табл. 11.5. На входной границе необходимо поставить два граничных условия; обычно задаются одна компонента скорости и давление. На выходной границе можно положить равными нулю производные от скорости, граничное условие для давления ставить не надо. Поскольку в уравнения входят лишь производные от давления, его величина может быть определена в одной точке, относительно которой будет осуществляться отсчет давления.

Следует подчеркнуть, что описанная выше постановка граничных условий проведена так, что уравнения и граничные условия образуют корректно поставленную задачу, имеющую регулярное решение. Однако для получения регулярного численного решения дискретных уравнений может понадобиться введение дополнительных граничных условий.

Описанные в этом параграфе методы основаны главным образом на конечно-разностной дискретизации и решении уравнения Пуассона для давления (п. 17.1.2). Чтобы получить достаточно точное решение без чрезмерного измельчения сетки, может понадобиться более точное дискретное представление конвективных членов (п. 17.1.5). Многие из описанных в данном разделе способов решения, использующие конечно-разностную дискретизацию, могут применяться и при ином способе дискретизации, например в случае спектральных методов (п. 17.1.6).

17,1.1. Разнесенная сетка

Численное решение системы (17.1) - (17.3) часто проводится на разнесенной сетке. Это означает, что различные зависимые переменные определяются в разных точках сетки. В работе [Peyret, Taylor, 1983] проведено сравнение различных разнесенных сеток применительно к определению давления. В работе [Haltiner, Williams, 1980] рассмотрена возможность представления различных мод Фурье (см. п. 9.2.1) на разнесенных сетках различной конфигурации для уравнений мелкой воды, аналогичных уравнениям Эйлера (гл. 14). Лучшая конфигурация разнесенной сетки представлена на рис. 17.1.

Видно, что давление определяется в центре ячейки, а компоненты скорости - на границах. Такая процедура делает сетку удобной для проведения дискретизации по методу конечных



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 [ 128 ] 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка